ZnS 和 MgF₂ 薄膜的离子辅助淀积*

顾培夫 陈宇明 胡学群 唐晋发

(浙江大学光仪系)

提 要

用 Ar 离子辅助制备了 Zn8 和 MgF₂ 薄膜, 依据滤光片吸潮波长漂移的测量, MgF₂ 膜的聚集密度大 约从未袭击时的 0.8 上升到轰击后的 0.9~0.95, 实验发现, 高能离子轰击(>1 keV), 膜层的吸收散射损 耗增加, 而低能离子轰击(<700 eV)可以保持优良的光学性质, 并显著地增加膜层的牢固度, 这对于温度 敏感的基底制备耐久薄膜是一个重要的应用。 关键词: 离子辅助淀积; 滤光片。

一、引言

造成薄膜柱体结构生长的原因之一是到达基片表面的淀积分子或原子的有限 迁移 率, 于是 80 年代初有人提出了用离子轰击技术给蒸发分子或原子额外地提供一定的激活能,以 提高淀积粒子的迁移率,从而改善薄膜的微结构。 文献^[1~8] 报道了氧化物薄膜离子辅助淀 积的一些很有价值的结果,相对而言,对常用的 ZnS 和 MgF₃ 薄膜报道甚少,Herrmann 等 人^[9]用 50 μ A/cm²,700 eV 的氩离子轰击冷基片上生长的 MgF₃ 膜,得到了通常 250°C 热基 片上淀积才能得到的牢固度,Kennemore 等人^[10]用低于 250 eV,5~70 μ A/cm³ 的低能离 子束轰击室温下的 MgF₃ 薄膜,发现膜层附着力和抗磨性显著提高,但短波(λ <275 nm)吸 收有所增加。对于离子辅助淀积的 ZnS 和 MgF₃ 膜的光学稳定性则尚未见到详细报道。为 了进一步了解它们的光学、机械特性,我们用高能和低能离子辅助淀积了 ZnS 和 MgF₃ 薄 膜,发现高能轰击时,MgF₃ 膜的聚集密度可达 0.95,但吸收和散射损耗增大;而低能轰击 可以在保持优良光学性质的前提下,大大地增加膜层的牢固度,从而为实际应用于室温基片 制备耐久薄膜提供了可能性。

二、实验描述

实验采用了三种不同的离子源。第一种是 Perkin-Elmer 公司生产 的 高 能 溅 射 离 子 源,离子能量为 1~2 keV,离子枪与基片法线成 30°角,枪口离基片 13 cm,基片上的离子 流密度为 25~45 µA/cm³。基片为室温,工作气压 8×10⁻⁵ Torr 左右。

第二种是英国 ION TECH 公司生产的中性粒子源,这种源以冷阴极直流方式工作,由 等离子体产生的带有较大能量的离子,在靠近输出栅的静电场的作用下能重新复合成原子,

收稿日期: 1988年5月23日; 收到修改稿日期: 1988年12月28日

^{*} 国家自然科学基金资助的课题。

9卷

因而产生中性粒子束,这种粒子源不但不会因电荷效应而导致薄膜晶格结构的损伤,而且可防止薄膜表面的电荷结果而使轰击效率降低。实验所用的轰击能量为1.6~2.2keV,源 离基片的距离在 6~10 cm 之间调节,以改变入射粒子的密度。粒子束与基片法线大约成 45°,以改善轰击粒子的均匀性。基片上的粒子流密度为 10~20 µA/cm³。由于这种源以冷 阴极工作,故工作气压高达 5×10⁻⁴ Torr。

第三种是 Kanfman 型离子源。实验所用的离子能量为 200~750 eV, 离子 源 与基 片的距离为 19 cm, 与基片法线成 25°, 基片上的离子流密度为 30~100 μA/cm³, 基片未加热烘烤, 工作气压为 5~9×10⁻⁵ Torr。

上述三种离子源,前二者是高能轰击,第三种为低能轰击。

三、光学特性

如果我们测出滤光片冷却后的波长漂移,则可根据 ZnS(*H*)和 MgF_a(*L*)的热膨胀系数 求出相位厚度变化 α_{6H} 和 α_{6L},它们与温度的关系为^[11]

 $\alpha_{\phi H} = (1.99 \pm 0.11) \times 10^{-5} \text{ K}^{-1}, \alpha_{\phi L} = (0.91 \pm 0.06) \times 10^{-5} \text{ K}^{-1}$ 。 式中, K 是绝对温度。由上式则可由基片温度求出滤光片峰值波长蓝移; 或反之, 由测得的 蓝移求基片温度。

另一方面,滤光片在大气中吸潮后,表现出折射率变化, 假如 ZnS 的聚集密度很高,故 仅考虑 MgFa 膜, 折射率的改变或者说聚集密度与基片温度、蒸发速率和真空度 等因素相 关,其中影响最显著的基片温度由下面二次方程联系^[11]

$$\left(\frac{\delta N}{N}\right)_{\rm L} = A_0 + A_1 \varDelta \theta + A_2 (\varDelta \theta)^2 (\%)$$

其中, $A_0 = 6.9$, $A_1 = -4.46 \times 10^{-9}$ 和 $A_2 = 9.35 \times 10^{-5}$, $\Delta \theta$ 是基片的温度增量,由此可以计算没有轰击时7同基片温度下预期的($\delta N/N$)_L和峰值波长红移,以便与辅助时的结果相比较。

实验制备了三类滤光片,第 I 类是轰击滤光片的各层膜均被 轰击;第 II 类是只轰击低电场强 度的内表面和膜层;第 III 类是 仅轰击低折射率膜 MgF₂。实验

结果列于表 1。 图 1 是 $\left(\frac{\delta N}{N}\right)_L$ 和聚焦密度 $P_L\left(=1-4.07\left(\frac{\delta N}{N}\right)_L\right)$ 与基片温度的关系。如上所述,由于淀积速率(R)和真空度(P)也将影响这些参数,为此引入一个品质因子 Q,它被定义为到达基片的蒸发材料分子与残余气体分子之比,

ε.	×	bombarded	l parameter	filte	er prop	erties		blue	sybstrate	c	ventior	1	ion b	ombardı	ment	恵
type	design	keV	$\mu A/cm^2$	λ nm	T %	Δλ nm	L* %	shift nm	temp. °C	$\langle \Delta N/N \rangle_{1} \times 10^{2}$, packing densiyt	g red shift nm	$\langle \Delta N/N \rangle_L$ $\times 10^2$	packing density	g red shift nm	
	A FLF G F=HLH2LHLH	1.6	11	1226.0	90.4	64.	7.3	1.24	78.2	3.98	0.84	30.4	1.52	0.94	11.9	
I	A M4LM G M=(HL) ³ H	2.2	14	657.9	73.3	8.	18.6	0.41	54.4	4.75	0.81	22.3	2.46	0.90	11.7	
	$\begin{array}{c} A \mid M4LM \mid G \\ M = (HL)^{3}H \end{array}$	1.6	13	641.9	71.2	5.	19.1	0.48	65.4	4.38	0.82	20.1	2.51	0.90	11.6	2
	$\begin{array}{c} A 2HM4LM G \\ M = (HL)^{3}H \end{array}$	2,2	14	658.3	62.3	7.5	20.0	0.80	105.3	3.24	0.87	15.4	1.53	0.94	7.4	nS 和 1
	A]M4LM G M=(HL) ³ H	2.0	12	638.3	67.6	5.2	19.8	1.18	160.1	2.16	0.91	10.1	1.29	0.95	6.1	MgF₂ ₹
	A M4LM G M=(HL) ³ H	2.0	13	604.8	84.5	3.4	7.1	0.26	3 8.1	5.34	0.78	2.28	3.68	0.85	15.8	事膜的
	$A M4LM G M=(HL)^{3}H$	2.0	18	610.0	80,0	3.5	6.8	0.30	44.0	5.12	0.79	21.9	4.86	0.80	20.8	离子辅
* *	$\begin{array}{c} A \mid M4LM \mid G \\ M = (HL)^{3}H \end{array}$	2.0	13	606.1	79.0	4.5	7.6	0.34	49.8	4.91	0.80	21.0	3.99	0.84	17.1	助淀制
	$\begin{array}{l} A \mid M4LH \mid G \\ M \Rightarrow (HL)^{3}H \end{array}$	2.0	13	597.1	76.4	4.8	8.0	1.20	175.7	1.95	0.92	8.5	1.93	0.92	8.4	
	A FLF G F=HLH4LHLH	1.8	13	1164.3	93	59	2.8	1.60	116.7	2.98	0.88	25.3	1.28	0.95	11.1	
III	A FLF G F=HLH4LHLH	1.9	13	1182.0	93	47	3.4	2.80	199.8	1.72	0.03	15.0	1.22	0.95	10.8	
	A M4LM G M≕(HL)³H	1.8	14	558.0	76.4	3.3	13	0,32	51.0	4.87	0.80	19.3	3.25	0.87	12.9	
_	$\begin{array}{c} A M4LM G \\ M = (HL)^{3}H \end{array}$	2.0	14	587.0	80.7	2.6	12.6	0.45	67.5	4.31	0.83	18.1	2.54	0.90	10,7	8
*	The total lososes (absorp	otion+seatter	ing) at peak w	avelength.									- Contraction of the second seco		-	15

Table 1 Experimental results of ZnS-MgF₂ filters with high energy ion-bombardment

9期

 $Q = 10^{-3} R/P$

很显然,图 1 中轰击膜的 Q 值虽然很低,但 $\frac{\delta N}{N}$ 和 P_L 仍有较大的改善。

如果增加离子流密度,则波长漂移可进一步减小,对膜系 A | M2LM | G, M = (HL)⁹H λ_0 = 530 nm,采用 1 keV, 25 μ A/cm⁹, 1.5 keV, 35 μ A/cm⁹ 和 2.0 keV, 45 μ A/cm² 的离 子束轰击时,波长漂移分别减小到 2.6, 2.3 和 1.9 nm。

上述滤光片是用高能离子辅助淀积的,采用高能离子轰击,损耗会明显增加,一般说来, 损耗随着离子能量、密度和基片温度的增加而变大。 表 2 是用光热偏转和积分散射法测量 的在 λ=633 nm 处的吸收和散射,可以看出, 2 keV 的离子轰击吸收比常规工艺增加一个 数量级,这是 ZnS 和 MgF,材料化学计量变化引起的。

Table 2 Measured losses for $G|(HL)^2H2LH(LH)^2|A$, $\lambda_0 = 530$ nm

1	Î Î			ion bombardment			
loss		conventional	1 keV, 25 μA/cm ²	$1.5 \mathrm{keV},$ $35 \mu\mathrm{A/cm^2}$	2 keV, 45 μA/cm²		
a heaventies	1	0.01	1	0,026	0,049	0.142	
absorption	2	0.02	7	0.037	0.073	0.156	
	1	before coated - after coated	0.05 0.19	0.09 0.27	0.05 0.27		
scatter	2	before coated after coated	0.05 0.18	0.06 0.15	0.06 0.23	-	

Table 3 Experimental results of ZnS-MgF₂ filters with low energy ion bombardment

des gn	bombarded parameter (eV) $(\mu A/cm^2)$	$\left(\frac{\Delta N}{N}\right)_L imes 10^2$	P_L	rod shift (nm)
Air M2LM G	conventional	7.13	0.71	29
$M = (HL)^2 H$	500 104	3.90	0.84	16
$\lambda_0 = 660 \text{ nm}$	750 110	3.65	0.85	15
	200 40	3.40	0.86	14
1	300 60	3.40	0.86	14
Air FLF ₁ G	conventional	7.38	0.70	30
$F = (HL)^2 (LH)^2$				· · ·
$F_1 = (HL)^3(LH)^3$	700 110	3.65	0.85	15
$\lambda_0 = 660 \text{ nm}$		-		
$\operatorname{Air}\left A\frac{\mathrm{H}}{2}B\frac{\mathrm{H}}{2}A\right G^{*}$	conventional	6.47	0.73	32
$\mathbf{A} = \left(\frac{\mathbf{H}}{2}\mathbf{L}\frac{\mathbf{H}}{2}\right)^2$				
$\mathbf{B} = \left(\frac{\mathbf{L}}{2}\mathbf{H}\frac{\mathbf{L}}{2}\right)^{5}$	200 40	3.98	0.84	20
λ ₀ =960 nm				

* A polarizer with detuned spacers operates at $1.06 \,\mu\text{m}$. The results in table 3 refer to values of wavelength of 820 nm at nonmal incidence.

采用低能离子轰击的实验结果列于表 3 和表 4。可以看出,低能轰击的光学稳定性虽不及高能轰击,但损耗大大减小,特别是散射,这可能是因为未轰击 ZnS-MgF₉ 多层膜的应力太大所致。

decion	absorption	scatter	bombard	l parameter	
uesign	conventional ion-assisted	conventional ion-assisted	eV	$\mu A/cm^2$	
$Air H2LF G$ $F=(HL)^{2}(LH)^{2}$	3.6×10^{-3} 4.2×10^{-3}	4×10^{-8} 7.4×10 ⁻⁴	300	60	
5-layer filter	4.6×10^{-4} 4.9×10^{-4}		400	65	
$\operatorname{Air} \left \Lambda \frac{\mathrm{H}}{2} \operatorname{B} \frac{\mathrm{H}}{2} \Lambda \right \operatorname{G}$ $\operatorname{A} = \left(\frac{\mathrm{H}}{2} \operatorname{L} \frac{\mathrm{H}}{2} \right)^{2}$ $\operatorname{B} = \left(\frac{\mathrm{L}}{2} \operatorname{H} \frac{\mathrm{L}}{2} \right)^{5}$	1.2×10 ⁻⁸ 8.6×10 ⁻⁸	1×10^{-2} 6.7 × 10 ⁻³	200	40	

Table 4 Measured losses of filters with low energy bombardment at $\lambda = 633$ nm

值得指出的是, ZnS-MgF。多层膜即使在离子轰击后仍有一定的波长漂移, 但漂移速 率要较常规工艺的滤光片至少快三倍以上,这也说明离子轰击使得柱体之间的空隙变小。

四、机械性质

为了检验辅助轰击薄膜的牢固度,我们自制了类似于 Heavens^[12] 所描述的牢固度 试验装置,即用半径大约为 0.125 mm 的钢球在膜面上作圆周滚动,增加负载使膜层损伤,最后用 Taly step 仪测量刻痕深度和宽度。表 5 是高能轰击 ZnS 和 MgF₂ 单层膜的 实验结果。按 Hertzian 理论, 玻璃基片在钢球作用下塑性变形具有临界负载,在临界负载时,钢球接触半径为

$$a = \sqrt{\frac{\overline{Wg}}{P\pi}}$$
 (cm),

式中,W =负载(g), $g = 980 \text{ cms}^{-2}$, P为玻璃压痕的硬度($=4 \times 10^{10} \text{ dan} \cdot \text{cm}^{2}$)。上述表 5 轰 击薄膜的刻痕宽度的实验结果非常接近于按此公式所计算的值($68 \, \mu \text{m}$)。 这说明负载已接 近于玻璃塑性变形的临界值,换句话说, 经高能离子轰击的薄膜其硬度和玻璃接近, 附着力 也非常好。

layer	bombardment	load(g)	scratch depth (nm)	scratch width (μm)	
m ZnS	no yes	25 	42 ± 7 1.5 ±0.6	$\begin{array}{r} 4\pm 2\\ 85\pm 5\end{array}$	
MgF ₂	no yes	10 1500 to	12±5 2±1.2	$4.6{\pm}2$ $80{\pm}6$	

Table 5 Scratch depths and widths determining by Talystep

			· * · **	Ta	ble 6 Test res	ults of the me	chanical proper	ties of films				8
,	bomh para	bombarded parameter		scratch te	est	seratch w	ith pencil	tar	e test	3 0% H	Cl(min)	10
coating	eV	$\mu A/cm^2$	dloa	tu	rns	conventional	bombardment	conventional	bombardment	conventional b	bombardment	
ALCONT 1 11 AND 14			(g)	conntional	bombardment							
Zn	200	60	30	1	>30	nondamage	nondamage	nondamage	nondamage	5	13	
$SMgF_2$	200	60	20	1	>30					25	120	
9-layer filter	300	60	10	2	16	4 B	HB	1次坏		damage in water	120	×
5-layer filter	400	65	10	1	11	2 B	4H	nondamage	- nondamage		_	松
21-layer polarizor	200	40	10 .	1	12	4B	2日	damage after one	damage after 3 time	damage in water	1	-#K
Table 7 Stress of films with high energy ion bombardment												
$stress(kgf/cm^2)$												
						conventional bambardment						
ZnS						710 ± 200 1133 ± 200						
MgF_2						2502±	200		1250 ± 200			

 326 ± 200

Table 6 Test results of the mechanical properties of films

.

 Na_3AiF_6

9 称

 611 ± 200

采用低能离子轰击,虽然牢固度不及高能轰击,但相对于常规工艺有了可观的提高。表 6 是一些试验结果。

薄膜牢固度的改善除了附着力和硬度提高外, MgF₂ 的内应力减小也起着重要的作用。 利用猫眼干涉仪^[13] 测量了 ZnS、MgF₂ 和 Na₃AlF₆ 膜的应力,结果列于表7。从表7 可以 进一步解释离子辅助的 ZnS-Na₃AlF₆ 滤光片比常规工艺更易破裂的原因。

五、结构特性和抗激光损伤阈值

对ZnS-MgF₂单层膜和多层膜作电子显微镜复型研究表明,在高能高密度离子轰击下, ZnS 膜趋向于无定形结构,而 MgF₂ 膜仍呈现柱状结构。用微区分析对 ZnS 和 MgF₂的成 分分析表明经轰击的 MgF₂ 膜存在着失氟现象, ZnS 膜的化学计量也不同于常规工艺的 膜 层。

由于光学性质、机械性质和结构特性的改变,除了采用高能轰击的多层膜外,一般说来, 辅助薄膜的激光损伤阈值有所提高。表8是激光损伤试验的结果,激光波长为1.06 µm。

eesting	later dama	$ge(J/cm^2)$	bombarded parameter		
coasing	conventional	bombarded	and later		
$\operatorname{ZnS}\left(\frac{\lambda_0}{4}\right)$	12.5	14.5			
$\mathrm{MgF}\left(rac{\lambda_{0}}{4} ight)$	15.4	24.8	$\begin{array}{c c} & 1 \text{ ke V} \\ & 25 \mu\text{A/cm}^2 \end{array}$		
11-layer filter	5.4	4.0	HWFM 18ns		
13-layer mirror	4.0	3.6			
$\operatorname{ZnS}\left(\frac{\lambda_0}{4}\right)$	9.1	11.2	200 V		
$MgF_2\left(rac{\lambda_0}{4} ight)$	9.0	12.7	$\frac{300 \text{ eV}}{45 \mu\text{A/cm}^2}$		
9-layer filter	1.8	1.8	HWFM 10ns		
21-layer polarizor	0.7	1.2			

Table 8 The results of laser damage

六、结 论

对 ZnS-MgF₂薄膜, 无论是高能轰击还是低能轰击, 用离子辅助来提高光学稳定性的 效果不象大多数氧化物腔那样显著, 虽然高能轰击在减小波长漂移、提高聚集密度方面要优 于低能轰击, 但是随之而来的光学损耗也相应地增大, 所以不能指望这种技术能显著地改善 光学性质。然而, 它在很大程度上能改善薄膜的牢固度, 这对开拓这些材料的更广泛的应用 是极为重要的, 尤其是在那些不能加温的基片上制备耐久的光学薄膜。应用这种技术, 我们 在法布里-珀罗标准具和光纤端面上制备了 ZnS-MgF₂ 多层膜, 效果是很好的。 本文的部分工作在英国女王大学完成,在此特向 Lissberger 教授表示感谢!吸收和散射分别由光声光热组和吕中良同志测量,在此一并表示感谢!

参考文献

- [1] P. J. Martin, H. A. Madeod et al.; Appl. Opt., 1983, 22, No. 1 (Jan), 178.
- [2] John R. Mcneil, Alan, C. Barron et al.; Appl. Opt., 1984, 23, No. 4 (Fab), 552.
- [3] Wayne G. Sainty, R. P. Netterfield et al.; Appl. Opt., 1984, No. 7 (Apr), 1116.
- [4] Steven G. Saxe, M. J. Messerly et al.; Appl. Opt., 1984, 23, No. 20 (Oct), 3633.
- [5] John R. Mcneil, G. A. Al-Jumaily et al.; Appl. Opt., 1985, 24, No. 4 (Feb), 486.
- [6] H. Demiryont, James R. Sites et al.; Appl. Opt., 1985, 24, No. 4 (Feb), 490.
- [7] Roger P. Nettefield, W. G. Sainty et al.; Appl. Opt., 1985, 24, No. 14 (Jul), 2267.
- [8] P. J. Martin; J. Mater. Sci., 1986, 21, 1.
- [9] W. C. Herrmann, J, R, Mcneil; Proc. SPIE, 1982, 325, 101.
- [10] Charles M. Kennemore, Ursula J. Gibson; Appl. Opt., 1984, 23, No. 20 (Oct), 3608.
- [11] P. H. Lissberger et al.; Optical Acta, 1986, 33, No. 7, 925.
- [12] O. S. Heavens; J. Physics and Radiation, 1950, 11, 355.
- [13] 陈宇明,唐晋发等;《光学学报》, 1986, 6, No. 1 (Jan), 70。

Ion-assisted deposition of ZnS and MgF₂ films

GU PEIFU, CHEN YUMING, HU XUEQUN AND TANG JINFA (Department of Optical Engineering, Zhejiang University, Hangzhou)

(Received 23 May 1988; revised 28 December 1988)

Abstract

Films of ZnS and MgF₂ have been prepared by Ar-ion assisted deposition. The packing density of the MgF₂ films has been increased from~0.8 without ion-bombardment to $0.9\sim0.95$ with bombardment as determined by the wavelength-shift measurement after moisture adsorption of filter. Experiment found that absorption and scattering losses increased with the high energy ion (>1 keV) bombardment and the low energy ion(<0.7 keV) bombardment is shown to increase significantly the abrasion resistance and adherence of films without significantly degrading their optical performance. This technique is of important for application in praparing durable coatings on temperature sensitive substrates.

Key words: ion-assisted deposition; filter.

822